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Abstract

I+’or a large class of quahtu]ll states, all local (I,oilltwise)  rmcrgy  conditions
widely used in relat ivi ty arc violated by tllc rcllor]llalizccl  s t r e s s -c r l c rgy
t e n s o r  o f  a  q u a n t u m  field.  ]n  c o n t r a s t ,  ccrtaiu  uonlocal  positivity con-
strai]lts on the qua.utulrl  s t r e s s - c ] l c ] g y  tc][sor ]I]ig}lt hold quite gcllcrally,

and this  possibi l i ty has rcccivcxt  considcrahlc  attention ill rcccnt  years. III
particular, it is now k]low]l  that the averaged null energy col[ditiorl-  the
condit ion that  the nu]l  - Null col[lponcnt of the stress-energy tensor inte-
grated along a co]ll})lctc  null geodesic is rlo])ncgative  for all states- holds
quite gcncra]ly  in a wictc class of spacctinles  for a minimally couplccl  scalar
field. Apart from t}lc specific claw of spacctinlcs  considered (mainly two-
dimcnsional spaceti]llcs  and f o u r - d i m e n s i o n a l  Millkowski  sl)acc), the nlost
significant rcstrictio]i o]( this result is that the null geodesic over which the
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average is  taken must  bc ac}lronal.  Rccmtly,  l,arry }ord and ‘J’om R o m a n
have explored this  rcstrictiorl in twwcfi],lcnsiona I flat  spacctil[lc,  and dis-
covered that in a fiat cyli]ldtical  space, although t}lc stress-ellcrgy tensor
itself fails to sat isfy tllc avcragecl  r)ull crlcrgy  collditio]t (A NI,;C)  alo])g tllc
(non-achronal)  n u l l  g e o d e s i c s ,  when  the “C~asir]lir-vacLlulll”  coritril,ution
is subtracted fro]]) the stress- c]lcrg,y tllc rcsrrlti]lg tensor dots satisfy the

ANRC inccprality.  Ford and Roman  na~nc  t}lis class  of  constraints  on the
quarltum stress-c]lcrgy tensor “diffcrcncc incqualitim.”  IIcrc 1 gii,c  a proof
of the diffcrcncc inequality for a r[iinilna]ly coup]cd  rnass]ess  scalar field
in an a r b i t r a r y  two-d  il]lerlsional  sl)acctill]c,  using the sar[le  tec}lniqucs  a s
those wc relied on to prove ANIX in au earlier paper with Robert Wald.
1 begin with ari overview of averaged energy conditions in clrrantum  field
theory.



1.  Averaged cIIcrgy  condit,io]w

All gmeral  results iII relativity require  SOIIIC infor]llation  ahout tile ]nat-

tcr co]ltent  of sl]accti~nc  as input. Altl)oogll  it) classical physics the issue ca]l
be avoided by assul[lillg  spat.ctil[]e to bc cll]pty, ill quautuln  tllcory al)so]utc
vacuu]rl  is mcauirig]css, and qucstiorls al)out  how Inatt,cr fields c.ontrit~ut,c  to tlIc
semiclassical Einstein equations arc unavoidable whmcvcr  quautuln  efl’ccts arc

ilnportant gravitationally. III classical relativity, infor]natio]l  al)out,  tllc Inatter

content  of spaceti]nc  can oftc~l be s])ccificcl  quite succiuctlly  by the for-in  of tlIc
stress-energy tensor for a specific ]Ilat tcl field. Iror cxa~n])lc,  tJIc electrol  IIagrlctic  -

field colltributio]],

call bc characterize]

y;b = ~: (J/)c]r’bc  - + ~~@cd~’cd) , (1)

t)y stating that, tllc stress-energy tensor has the forln lI;q. (1 )
for some c]osed two-fc)rlo  ]“ab that, satisfies tllc vacuuln hIaxwcll’s equation
d*l’ =- 0. Similar cllaractcrizatio]ls  exist i]) })rincip]e  ill quar)tul[l  field theory.

l:or exal]lplej  the rcgularimcl strf.ws-mergy  tel]sor of a IllilliIllally-coll])led  scalar
fie]d o]l Mi]]kowski sr)acetil[le call 1~~ c]laractcrid as a]ly tc~lsor (~~b) that  ]Ias

tllc forlll of the coincidence lilllit

in al] iucrtia]  c.oc)rclinaic syste]ll {30], wllcrc  w(z, y) is auy s~nooth, sylo]nctric

hi-solution of t}le wave equation sucl I that tllc two-poi~lt fu[lction /io + tf - wl]crc
i~o is the sy]nmctric. two-poi]ltl fullctio]] of tile l’oincarc  vac.uurn  state satisfies
the positivity condition (SCC Sect. 3 Ilclow). Already in flat sj)acetir]le, a dcscrip
tion of the quantum ]natt,cr content based 011 l;q.  (2) is far more co~])~)licatecl
than the corresponding classical clcscriptio]l  as illustrated by l;q. (1). III arbi-
trary curved s~,acetilne, the kind of c]larac.tcrizatio]l  of (~~b) ex~)resscd  iu l;q. (2),
although available in I)rinci])le, is SCI hravily  cluttcrcd  with forlllalisl[l as to be
essentially illtractaljle.

lU fact, even in classical p]lysics  a collll)lcte,  detailed s~)ccificatio~l of tllc
stress-energy as in ]I;q. (1) is seldoIll very il]u]niuati]lg  UIIICSS Olle’S primary in-

terest is to find exact solutions of l;instei]l>s  equations, ]nstcad,  in modml
approaches to relativity only the Illost fulldalllelltal  feal,ures  of g~b, distilled

fro~n expressions like lI;q. (1), arc relied 011 to gain ge]]cral  iusigllt  into slJacetilne
structure. ‘] ’hesc fulldalne~ltal  fcatum arc that ~~b is a conserved, sylo]netric

tensor, a]ld that l~b satisfies cmtaill  “energy c.ollditiom” at every ]]oint in s~)acc-
tilne;  the energy conditions exl]rcss,  roughly, the idea that the locally -l[lcasured
energy clensi t y must be pclsiti ve everywhere for all observci-s. ‘1 ‘he c])crgy  co]l -

ditions  (or, more precisely, at least tlIc weak energy co~lditio]l) arc u~liversal
i)) the SCIISC  that (i) they arc obeyed by tllc classical stress-cilcrgy  terlsors of

all Inattcr fields, aud (ii) they play a crucial role iu deriviug  Ioost of what wc
k]iow about the large-sc.alc structure of s])acetil[le. llldccd,  it is ~]crfcctly  plall-
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sil)lc 10 regard the cllcr.gy conditiolis,  aloIIg  with the coliscrvatioll  ~~rollerty,  as
a coln]~lctc charactm-izatio~l  of classical lnattcr ill genera] relativity,

III decj, contrast with this classical ],icturc,  i~i qua~ltui]l tllcory no SUCII
co]nl)act characterization is yet avai]al)]e  for t]lc right  llaTld side of t]lc sc~lli-
classical l’;instcili equations. ‘J’lle syllll[letry  aIld conscrvatio~l  pro])  crtics  s(,ill

hold for (g~b),  of course, but IIOIIe  of the ]ocal cuerg’y conditiolis  do. lI;VCII

ill flat,  Minkowski s})ace, tlie rcgu]arizcd  (norlnal-ordered) expectatio]l  value
(Wl:7~O(T):lL~) at ally ])oiut x is unhoulldcd  froln below as a ful]c.tional of tl,c

quarltul]) state L). OIIC mig]lt  think  that this is a l)athologyj  as is ofte~l tlic case
ill quantum  field tllcory, that stalls froln localizing tile operator :Y~o(~): to a
si)lglc point  x in spacctitnc. It turns  out, however, that tllc voluInc  integral of
(til:~~o(x):lk,) over ally fixed,  s~,ace]ikc  3-box of fi),jtc size is also Ulll,oulldcd fro],,

below as a functional of u (and a silrlilar i-csult  holds for the sl)acctilllc-voltlltir

integral over a coml]act  4-l)ox).  It apI]cars that, hy choosing the quauturo  state
w al]l~rolJriate]Y OIIC can stuff ari  ulll~oulldcd a~noulit  of llcgativc  mlcrgy into a~ly

fixed, firlite region of s])accti~llc, ])ossibly at the expense of placing ]Ilore  and
lnorc ~,ositivc mlcrgy outside tllc sllarl,ly  dcfiacd bou]ldaries  of that rcgio~l ([1]).

III the abse]lce  c]f a workai)lc,  co~nlJlctc  characterization of regularized
strcxs-e~lcrgy  tensors ill quantu~n field theory, rlla~ly of tile basic quest ions

about glol)al spacetill]c  structure in smoiclassical  gravity rclnail] unallswcrcd.
For cxalnplc,  can s]~ac.ctiloe  sirlgularitics,  gcvleric.a]ly unavoidable with classical

Inatter, Lc avoided WlIeII  quantul]l  efTccts ~nakc tllc doIlliIlarlt contribution to
st,rcss-enci-gy?  Arc classically forhidde]l collflguratio]ls  of sl)ac.etirllc curvature
(sucl, as traversable wor,nholes, c.crtai Il killcls of tol)ology c.l)auge) allowed ill
sc~rliclassical  gravity? IS the total ~oass of a boullclcd lurnl) of quantized ~I]attcr
positive as lncasured  frmn iufi]lity? h!orc gcncra]]y,  is any consmved  tensor ~~b

realizable as tJIc regularized stress-cllcrgy tcllsor  of SOIIIC cluanturIl  state? If this
were the case, mniclassical gravity would have alltlost  110 physical content.  If it

is l]ot the case, then w}lat arc t}lc c.o~lstrai]lts  q>b }Ias tc) satisfy to bC’ a ~lhysical
stress- cucrgy tc~]sor?  1 would like to advocate the discovery of a useful and

complete characterization of quauturl]  stress-encn-gy txnsors ~~ onc of the most

ilo})ortant  unsolved prohlc~ns  in c.urwxl  sr)accti~ne quantum field theory.

Prolnising  first ste])s towards tile c.c)Ilstructiou  of suc}~ a characterization
have allpcarcd  iu rccc~lt years, Lcgilluillg with [2], aud with further dcvclo~,-

mcIIts in [3]- [8]. Au earlier work, Ref. [9], discussed soIt Lcwhat related issues.

TIIC results of these early investigations collcm-Jl various no]l]ocal com.traints  011
the stress-cncrg,y telwor involving  its iutcgrals  along, causal geodesics; the lIIost
importaut of those constrai~)ts is the avcra~;ed  null cmcrgy condition (A NRC).
II] its si]]~~,]est fclrlll,  AN]{;~ co]lstraiIls t]tc str~ss-c!])c!rgy  tc~~sor  ~~b s~]c]l t h a t
the itltcgral

(3)

wllcrc y is a co~lll)lctc  nul]  geodesic with afliuc parameter v at~d corrcsponditlg
tangmlt  vector ka. ‘1’lIc prccisc, gc~lcral forlllulatioll  of ANEC which dots not

assu~nethc  couvcrgmce  of theintcgral iu l;q. (3) cau Lcfoul[d  iu Sect.2 of [4].
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lror a nu]nbcr of si.g]lific.ani, global mults iII relat ivi ty,  ANIIX;  (or at least  a

corresponding condition along; half- COIIIIJlCtC null geodesics) SmNnS to be stroIlg
cnougl I to rcp]acc the classical IJoilltwisc  IIU1l  c]lcrgy collditioll;  these include tllc

l’cnrosc  singularity theorem ([10]- [12]), and tlIc positive mass tl~corclll ([13]).

l’or a miniloally  cou})lcd scalar  field ill two dilllcnsions,  it is know~l  that the

regularized stress-energy tensor satisfies ANIIX  with coIm)lctc generality, along

all complctc  achronal  IIUII geodesics in any globally-llypcrbolic spacetilne,  and

i[l every lladalnard quantuIll  state of tllc field ([4]). III four dilocnsio]ls, this
,gcllcral  ANIC rcsu]t h o l d s  i n  Mi)lkowski sljacctiltlc,  and,  IIlorc gcllcrally, ill

ally spat.ctilnc with a hifurcatc  Kil]illg tlori~oll it holds along tllc achronal  null

.gcllcrators of the horizon, l)rovidcd all isornctry-illvaria]lt  (wit]l rcsl]ect to the
Killing field) lladaIoard state exists (SCC [4] for details).

Conditions si~nilar to ANIIXI  hut wit}) y rcp]accd with a complctc  ti~l~e-

~ikc geodesic hold with soInc ge~lcrality  fc)r quantu]t)  stress-cllcrgy tc~wors ill
h4inkowski  space ([2], [6], [’i’]). ]lowcvcr, this a}~})cars  to be a special feature of
flat-spacctiroc  quanturo  frcld tllcory;  it is riot diflicult  to find curved-sr)acctilllc
countcrcxa~np]cs  to the timclikc  averaged weak cllcrgy condition ([14]). III fact,

rclyillg  on a silll~)lc sca]ing arguroent,  wc pointed OLIt  ill [4] that cverl AhTli;C,

altl)ough  it holds with complctc  gcvlcrality  irl two di~llcrlsions, canr)ot  hold gen-
erally  in c.urvcd four--  dirocnsic)nal spacetirocs  (SCC [1 6] for a further dcvelol)lllcrlt
of this scaling idea). Although this argurnc)lt  and its cone.lusioo arc correct, it

is by no means clear that tJIcy s})cII  the dmoisc of averaged crlcrgy corlditiorls iri
quantuln  field theory; that, many ~)co})le have hccII lcd to bclicvc so appears to
bc t,lIc result of a grczit,ly cxaggcratcd  illtcrprctat,iorl  of tl)c argurllc~lt. I+;lscwllcrc

([17]) 1 argue for a more lnodcratc  intcrl,rctation, based, csscrltially,  on a gcwcr-
alizcd version of AN1;C ill wllicll tllc right  lItiIId side of II;q. (3) is rcr)laccd with a

rnorc general firlitc lower bound. 1 do regard ANl+;C-type incxqualitics as a very
promising starting point towards the forIoulation  of a collll,letc  set of universal
constraints that characterize quant,ulo stress-cllcrgy tcr~sors.  l“or exalnp]c,  oII12
might think that AhTl;C is too weak Lccausc it only constrains the integrals of
~bb along null .gcodcsics;  in fact, ANII;C a~)pcars to t)c r)cmwrful  enough to place
constraints on other, roorc gcrlcral  averages of the stress-energy tcllsor. 1 will
now ~Jrescnt a siroplc analysis that su})ports  this view:

,. ,

(’.

1 will consider a stress-energy tensor  ~~b t]lat satisfies the sirlll)lc forln
O f  AN](;C  givcrl by ]’;q. (3); thcrcforc  ] irlll)]icitly assllr[lc  that g~b falls ofl a])-

propriatcly  at infinity. A rnorc sol]llisticatcd  analysis that dots away with this
assumption (and possibly with SOIOC  of the other strong assulnlltiolls  1 will rIlakc
IJC1OW) can probably be givcrl; 1 rctaiIl tllcsc assulnptiolls  to kccl~ IIIy analysis

trans})arent.  More prcciscly, 1 consider a g]ohally IIypcrbo]ic spacctiloc  (M, g),
and a c.o~lscrvcd stress-c]lcrgy tensor ~~b which satisfies AN II;C in the forvo  of
I;q. (3) along all corllp]ctc, achronal  rlull geodesics ill (M, g). l,ct >; c M bc a
spacc]ikc Cauchy surface, and S c >; Lc a c,cnllpact  subrl)allifold (with bourld  -

ary) irl };. 1 assuroc:

(Al) ‘J’hc subregion S c 1; is choscII large enough SUCII  that, ANIIX  [lq. (3)]
holds along the null gcrlcrators  of tllc future horizon 11+ (S).
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Note t}lat the gmlerators  of }1+ (S) arc Iicccssarily arJlroIjal IIull geodesics; t,hcy
have their  pasi  cndl,oints  011 the bou]lclary  OS of .S’, aIId tllcir  future ald},oints

on a (ill general cor]lplicated)  caustic set (~. 1 assuIlle that:

(A2) g’hci-e exists a time fullctiol) Q defillcd c,]) the do~,iait] of del,endcnce  l)+ (,S’)
SUCII  that (i) a = O on S and a c 1 011 11+ (,S), (ii) O;d = - tc?ta 011 S, where ~L~

is the future-pointillg unit  norlllal  to S and N is a ~Jositive  constant, and (iii)

throughout tllc int,crior of 1)+ (S)

forsolne constant  q>O.

q’l~corcm]: Under tllc assuml,tions  (Al) and (A2), the total mlcrg;y coIltaiIled

in the region ~S C X is nonnegative:

J
Y’ob?la?tb  d3u > 0 , (5)

s

where d~a is the VOILIIIIC  clm)lcnt 011 >;.

S1’  H+(S)

x- ——— —

Figure 1. The ‘geometry involved in the analysis leading to Iiq. (5). “l”he

spacelike  surfaces .S’a are the level se[s of the time function cr; accordingly,
SO is S and S1 is the future horizon }1 + (S).

‘1’}Ic assu~n~)tion  (A 1 ) is quite rcasonal]]c within  the scope of the present
discussion); oIIly the last ~,art of assurn~,tion  (A2) [i.e., tllc inequality I;q. (4)]

is unl)leasant,ly  strong. (See Irig. 1 for a two-dilncllsioIlal  representation of the
geol[letry  invo]vcd  in this analysis). Notice that, l~b dots not necessarily satisfy

the (poilltwise)  weak energy condition, so the ri.gilt hand side of lIlCl.  (4) is Ilot
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ncccssari]y  ~Jositive,  and siln])ly choosing a large q > 0 will 110~ do. M o r e o v e r ,
bccausc  of its construction tlIc time function  o has to Clcvclol) gradient singular-
ities  at the }Joulldary  8,$ and at tlie caustic set C! [iIut cr is sIIIootlI  tllroug]lout

tllc (opcII)  ilitm-ior of tllc dolnain  of dcI)eIIdcncc  1~+ (S)], so l;q. (4) dfectivcly

constrains the asylnptotic  hc!havior of ~~b Iiear ~ and OS (SCC ]“ig. ]), lror a typ-

ical example of the gcoliletry  involved  here co~lsider  two-d illlensiollal  Minkowski
spacctilnel  with the surface >; given by {t = - A’}, K > 0, and with S c >; given
by that piece of>; lyi~lg witllill the wed,gc {I* I < It I}. III this exaInplc  tllc horizo]l

11+ (S) is the past, nul] COIIC of the origin, }1+ (s) = {Itl : [xl, -K < f < o},
and for I*I << Itl the tilne  functio~l @ ~all hC tak~ll as

‘+’4’-:)“i
up to corrections of order (z2/i2). ‘J’llis fu]lctio~l  satisfies the c.ollditions  (i) and

( i i )  of  (A2)  [agaiu UI) to order (z2/i2)]  with K =. l/li . ‘J’lINI1  assulilillg  t]lat

2 3!2ytmn, tt : - 7 ’0 0  jjt~2 ~

1 2
7,00*2 = rf!oo _

,i Ii 2

( )
1+;2

‘]hcreforc,  i~l the region Izl < It[ throughout  the do~llaill  of dCPCIIdCIICC  ~~+ (S),
tllc quall!ity  7 ‘obo’; ab has the salnc sign as ~’ab @;~CY;b  aI!d is down in ~na,gllitudc
hy a factor x2/i2.  With the provisioIl  that 7’ab falls ofl’~liccly at tllc houlldary  8S
allcl near the caustic set (I]crc  tllc origin) t! (wllcrc t}]c true rk heco]llcs singular),
and with the corlstant  q clloscn ill tllc range O < q < 1, this hlinkowski-s~jaccti ]]lc
exarll~)le  suggests the incqlla]ity  l;q. (4) to be a reaso~lal~le assuln~)tioll.  Quite

]lossihly this inequality CaII be wcakmlcd co~lsidcral>ly  without clla~lging the
main argument in the lJroof of tile thcomn, which I now proceed to give.

I>rcrcrf of the tl]cormn:  l,ct me dcfillc (SW Fig. 1 )

IIy i]ltcgrati]lg  the identity

over the volume VU, 1 obtain

where ‘/lb denotes the future-poilltillg unit, norlna] arid d3a is the volume for]]]
011 SU. l’utting

l(u) : -
1

~’abm;a71bd3u , (7)
s“

a~}d combining II;q. (6) wit])  II;q. (4), 1 ol]taill  the inequality

(8)
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si])c~ (k;b is ])ara]](’]  a]]d C)])] lositc k) (]1(’  flltl]r~-],oil]tillf, u]lit ]Iorllla] 71~, t]l~
scc.ond tml]l on the right llalld side of I;q. (8) can t]c writtcrl  as

/

u

@<i;a~;b dv = -

//
do ~’ab<);a?lb (/30

I’u o s.

(9)

l)cIlc.c tllcincqua]ity l;q. (8) takes the fern]

/

11

l(u)  <l(o)-1  q I(cY) da .
0

(lo)

Now illslJcct the definition]] l;q. (7) of the quantity l(u). 0~1 the null surface
{a=l}=l  l+(S), n;a(si,,cc itisar]lillg radicl,t)i s*,cccssarilya  ],afil,ct a],-

gent vector along the null geodesic generators. ‘1’llcrcforc,  l(l) is the avmagc

o v e r  th~ @ of IIU1l  g~]lcrators  of )14 (S) of tll~ AN]’;~ i[ltegrals  of ~~b alo]lg
tl)osc gm]crators.  ‘1’hus 1(1) > 0 by assu]lil,tion  (Al). }]ut it is clear fro]n the
illccluality I;q. (10) that tllc conclusion 1(1) > 0 is illcolnl)atil)lc  w,itll ttlc as .
sulnl,tioll  1(0) < 0 .  ‘J’llcreforc]  co~lcludctl)fit  1(0) >0. llyassulll~)tio~l  (A2)-(i)
al]d (A2)-(ii)

1(0)  = N
1

;/’ablla?ib d30 ,
s

and the assertion of the thcc)rclli [];q,  (5)] follows. Cl

II tllc p~cvious  scctio]l, ANEC  ]lcds t o  be gel]-
cralizccl since in the strict forln givrm Ly lI; C1, (3) it is typically violated ill four-
dilncl)siona]  curved spaccti~nm ([4], [16]). ‘J’hc ~l}ost  natural generalization of
ANII;C involves rcplaci]lg the right  hand side of l;q. (3) with a broadly spec-
ified lower bound; 1 will discuss t}lis irl lnorc  detail ill [17]. Another, closely
related gcnmalization  IIas l)CCI) discovercxl  by 1,. lorcl and ‘J’. ltorna~l in [1 8]; it

illvolvcs what they tcrln “difl’cr-cncc illcqualitics.  ” A diffcrcjlc.e  illccluality is an

ANl;C-type i~lcquality  of the forln

J
((~l~:blk~)  -  ]~ab)  k“kbdv > 0  VU , ( 1 1 )

-r

W]lcrc (w [q~blW) denotes the re~lorl[]a]izcd Stress-ellmgy tcllsor  in the quantuln
state w, l)ab i s  a  st,atc-illdc~)clldcl]t,, gcolllctric,  tcllsor  01] sl]acctimc,  arid the

integral is evaluated along a co~ol)lctc, null geodesic ~ as in F;q. (3). ‘J’l~c diffcr-
cncc inequality can be givcni a ~]lorc J)recisc  forloulation  that does not require

the convergence of the integral ill ]I;q. (1 1 ) irl just the sa~ne way as A NIX [SCC

Sect. 2 of [4] and l;q. (15) below]. ]f the intcgra]

J
l]ab k“kb dv (12)

-r

converges, l;q. (1 1 ) yields a (in gc)leral non zero) lower bound  011 the AN](;C

integral:

J J
(til~:blw)  k“kb dv ~ I)Ob kakb dv VW . (13)

‘Y -r
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]t is this forln of tllc diflcrc~lcc  i!lcqua]i~y wllicll lnakes  it J)otcntial]y  sig]lificallt

for a~)l)lications  such as sirlgularitly  tllcorcllls  (see [17]).

What, l’ord  aucl lto~]lan IIavc discc)vcrcd  ill [ ]8]  i s  that for a ~llasslcss
Klein-Gordon field on the ilat cylilldcr (two-cli]l]c~lsio~lal  Mirlkowski  spacctilnc

idcvltificcl lnodu]o a dismctc  groul] of spatial translations), the diffcrcncc  in-
equality l(;q. (1 1) holds along all collll)lctc null geodesics provided l~db is tllc
stress-energy tensor of tllc Casilnir  vacuuirl state:

“’d-: ‘J) (14)

where 1, is the lcngt]) of Lhc sJ)atial sections (i. e., the I)oillts (*)i) a]ld (2+ 1,, t) ill

Minkowski sJJacctimc arc identified). Note that comIllctc  null geodesics on the

cylinder arc not  ac.hro~la],  and ANJ;C,  is violated along tllcln  [e.g. in tlic Casilllir
vacuurll state w]icrc (7:6) is givc)l by the right,  ha~ld side of I’;q. (14)], Also

note that tllc difference illcqua]ity  callllot  llavc tllc for~i~ l;q. (13) in this case
si~lc.c tllc i~ltcgral II;cl. (1’2) dots not, collvcrgc. Ncvcrtllclcss,  this two-dir! tensional

difl’crc~lcc-illcquality  r-csul~  of []8] r e l axes  tl]e acllrollality  assu]nJ)tion of tllc
ANEC tllcorcln  proved in [4], and its ]nain significance lies in this irllprovc-
111(  ’ht.

1]] t,lic rc~naining scctiolls  of tllc pa~]cr 1 will give a .gcneral  J)roof  of tllc

diffcrcncc illcqua]ity  for a luasslcss  Klein-Gordon field in an arbitrary, glol)ally
hypcrl,olic  two-dilncnsiolla]  curved slJacctirllc (M, g). More J)rcciscly,  for every
lladaloard state w of tllc flcld and for every co~oJ)lcte null geodesic T ill (M, g)
with aflinc paralnctcr tJ E (- cm, cm), 1 will prove that the followirjg holds: l,ct
c(x) t)c any bounded real-valued fu~lction of coin J]act supr)ort  0]1 IR W11OSC  Ijourier

t ransform t(k) is such that for some 6 > 0 the fullct,ion (1 + kz)l+ blii(k)l  is
boulldcd  [i.e., ]L(k)l  decays at least as fast as Ikl- 2-26 as Ikl -> cm; this illll)lics

that c(x) is C1.] “J’hcIl,  for all choices of origin of tllc afli]lc para~llctcr  v, L1lC
regu]arizcd  stress-energy tcllsor  (w [?&b [u) satisfies the inequality

w]lcrc ))ab is a state-illclc~)c~ldcllt  tc!lsor which 1 will sl]ecify  [~)ob dcJ)cnds  OILIY

on the geometry of (?VI, g)]. When tllc illtcgratld  ((ti~l~~b[ti)  - ~)ab) kakb is illtc-
grablc,  l;q. (15) reduc.cs  to the silIIJ~lc for])}  lq. (1 1) of the diffcrcncc  inequality.

My proof of the diffcrcncc incqualit  y Eq.(15) will bc entirely parallel to
the proof of ANI+;C in two di]ncnsiolls  tl,at wc gave in Sects. 4 and 5 of [4],

ancl 1 will omit all details which arc simply rcstatc~ncIlts  of the c.orrcspo~ldillg

details in [4] modified to suit the prcscl]t a~lalysis. Conscquc~ltly,  readers WIIO
wish to follow the rcInaining  sections of this paper closely will find it useful to

have a co~~y of [4] at }Ialld while they do SC). 1 will begin, ill Sect. 3 hclow, by

discussing the rclationsl[ip  bctwccll quantum states ON hfinkowski s~)acetill]c Ikt2
a~ld quantum states 011 the flat cyliIidcr S1 x lN. 1 dcscribc  the proof of the

difference inequality for the flat cylinder S] x l-l in Sect. 4, and for a general,

curved two-dimc~]sional spacctiInc  in Sect. 5.
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3 .  Statc,s o~] IIlz and s t a t e s  cm ,$’1 x Ill

As we did t}lroug}lout [4], so also Ilcrc 1 will adorjt  the algebraic vicwJJoillt

or] qualltuln  field theory  i]! a curved  (globally hypcrl)o]ic)  s~)acctilnc  (?vf, g). 1]1
J)articu]ar,  quantuln states L, arc spccificd  hy their t,wo-J]oiut,  distributions

A[l”, G ]  :. LLJ(#[F]#[G])  , }’, G E S(M) , (16)

A(j, (J) : A[J;j,  I’/’g]  , f, !J E (“7(M) , (17)

wllcre S(M) is the sJ~ace of all solutions of tlic l{lcill-(;orcloll cquatioll  which arc
colll~)act su~)})orted  0]1 Cauclly surfiaces,  al~d }’;j c S(?YI)  demotes t}Ic “advanced
Illillus ret, arclcd” solution with source j E C~Om(Xf)  (see Sect. 3 of [4] for a coll-
cisc il)troduction  to the alg;chraic a])])roacll).  ‘1’IIc two-p oi]lt functio~i A call he

writtml  ill the forln

A://+ ;iu, (18)

wllmc p[l’, G] = Re(A[l”,  C;]), and a[l’,  G] is  the Klcill-Gordoll  in[}cr J]roduct
(SCC sect. 3 in [4] for details). “1’he algebraic posit, ivity condition  on the stat,c u

is equivalent to the illcqua]itics  1/[1’, l’] ~ O V]’ { S(M), and

//[1’, F] /([(;,  G] > ; Icr[r,  G] 12 VI”, G E S(M) (19)

Note that l}q. (19) ilnJ)lics li[~’, 1’] >0 for all 11’ # O ill S(M).

I,ct Ml denote tile tivo-dilllcllsic)llal  Millkowski  spacctilllc  (IR2, q), where

q = da:2 - di2 = - dw dv,  and let 1. dcllc~te t he  f l a t  cy l inde r  S] x Ill obtai~lcd
fro~ll Nfirlkowski  sJjacc b y  tllc idmltificatiorl  (z,  t) ; (x -I  1,, t ) .  ‘J’llcrc  exists  a

canonical  “wra~)pillg” lIlaJJ W : C& (Ml) --\ COm(Il,) givc]l  by

and a  corrcsJ)onding  “wraJ]ping”  ~liaJ) Ws : S(Nll) -> S(11,)  whicl] satisfies

W S o t;hf = b;], o W, w’here II;hl a~)d h:], denote the advanced-lllinus-retarded
(;rccli’s  functions 011 M slid II,, rcsl~cctivcly.  1 will dcllotc  WS by tllc sallle syrn-
})01 as W as lo])g as it is c.lcar frc,~ll the context wllicll ~[laI) is which. Also, with

j E C~(Ml) a]ld 1 E S(M), 1 will usc the shorthand ~lotatio]l fw’ and II’n’ to
demote W(j) E ($” (Il.) aud W(J’) E S(11,), rcsJ)cctivcly. Note that tllc ~naJ) W
is onto both frol[~  Cy (Ml) to Cr (Il.) al)d frc,r[l  S(Ml) to S(11.).

l,ct @ JJc a ~j)asslcss  Klcill-Gordon  field on Ml, and silnilar]y  on II,. A

IIada]nard  ([4]) quantu~n state w o]) N! is sJ)ccificd  by a two-J, oillt fullc.tion of
the forl[l

p~f(o:, 2’) = //l) Jf(o:, x’) -1 uJAf(x,  2!’) , (21)

wllcrc i(oM is t}lc two-point func.tioll of tllc l’oillcarc  vacuuln  [given by l’;q. (19)

in [4], Scc.t. 4], and ulM is a s]nooth,  sy~]llnctric  bi-solutiol)  of the Klein-(jordoll
equation such that j~~f = po~ + w~ satisfies t,hc JJositivity incqua]ity

PMU,.0PA4Q7,!?) > ; l~hf(J)9)12 Vj,  g c C;& ’(Ml) . (22)
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01] tlIc flat cylinder 11,, tllc allalogur  of tllc ]’oincarc vacull~n state is tl]c Casilllir
vacuuin,  wl)ic.h call bc corlstructcdj  e.g., by a ]nodc dcc.o~lll)osition  wllcrc  l]ositivc-

frcclllmlcy so lu t i ons  a r c  dcfil]cd wit]l rcs})cct to LIIL- canonical  ti[llelikc Killillg
v e c t o r  0]1 II,, ‘1’he Casimir  vac.uull] is a IIadalllard  st, at,c and 1 will dc]lotc its

two-l)oillt  function hy I{OJ, [SCC l’;q. (’28) bc]ow]. ‘J’hc two-~)oillt  fullctio~l of ally
other lladalnard state on II, call I)c written ill ttle forlll

where Wl, is a slllooth,  syll-llnetric  Li-solution of the Klein-Gordon equation on
II. SUCI)  tl]at 111, satisfies the IJositivity il)equality  al)propriate  for J1.:

What is LIIC relat,ionsbil) Lctwecll lladalllalcl  states on 11, and IIadal]]ard  states

011 the Millkowski sl)ac.ctilnc  Ml? ‘lo cx~)lc)rc  this question, it is collvcliimlt to
pull back distributions dcfillcd o]) II, (such as ill, and al, ) via the wrapl)ing  nlal)

IV so that they becolne  distril)utions  011 M. l’or cxaltll,le,  the l]ull-back of tile
distribution //1, is the dist,ril)utioll Iil,hf 0]1 Ml defined by

(25)

and tllc IJull-backs pol, ~’) WI,*’  and C Jl, ‘f of  tile distril)utions  ~~o~,, w~, and u{,
are Clcflncd silni]arly.  Sil]cc the wral)~~i]lg IIlal) W is onto, 1 call now rcwrit,e the
l)ositivity  condition for u~l, [I<;q,  (24)] as a~l i~leclua]ity  ddillcd  J)urc]y  on Ml:

IS pJ, Jf : pl)l,~f-i U)J, M tl,c t~}ro.l)oillt, fullctio~l Of a IIadalnard  state 011  Minkowdi

spacctilne?  Clearly, ii], ‘i’ in gellcral,  a~ld /foI, ‘f in l)articular,  all IIavc tile correct
short dist,ance hchavior  to be gcnluinc  II adalnard  states 011 Ml ([1 9]), IIowcvcr,

it is easy to scc ([20]) that Ii], ‘f fails to satisfy tllc positivity  c.orldition F;q. (22)

on Ml, hence it fails to bc a quantu]n  state to begin with. ‘l’he reason is simple:
there exist  Xrlany  nonzcro j E L’~(MI) SLIC]I that }’jAfj # O and ‘W(j) :- O; irl

other words, t]lere exist nonm-o  ~’ < ,$(Ml) sL]ch that, l{’lV = O. ‘l’bus, for cacll
SUCII  II’ E S(M),  1’ ~ O arid p[, ~’ [l’, l’] = O, and this c.olltradicts  tlic positivity

illcqua]ity  on Ml.

‘J’hc next natural qumtioll  to ask is whctller  Wl,hf is the regularized i,wo-
point  function of a lladalnard st,atc 011 NJ!. in ot}lcr  words, given a srllc)oth,

sym~tlciric  Li-solution  wl, on 1, which satisfies the inequality l’;q. (26), is the

two-point  functio]l IIOM + u~~,~ a IIadalnard  state on Minkowski sl]aceti~l]c?
‘1’his two-J)oint function has the IIadalnard  form by dcfillition,  and, physically,
would lnake  sense as the “unwralJIJillg”  of tllc quantu)ll  state ~/oI, -I WI, o]Ito  tllc

covering space Ml. Clearly, the argulnc~lt  above proving po~, b{ + u~l, ‘if to be in
~~ ]rurt]lcrlllor~, if pofif ‘t ‘}I,Mviolation of I)ositivity  does not a~)l]ly  to l{o~~+ WI, .

were indeed a state on Ml, tllc I)roof of the difference i~lcquality l;q. (15) 011
1. would follow irnlncdiatcly  fro~ll the prc]of  of AN1;C on Ml: t}lc regularized
stress-cllmgy of this  “state” on MilLkowski sr]acctilnc  is ljrcciscly the diffcrcllcc
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(!l~b)],  - l~a~ whic]l al)pcars  ill the i~ltcgralld ill llq.  (15) .  Ullfortunatc]y  ( f o r
lJIy I)url)oscs), t h e  t,wo-f)oillt  ful]ctio]l  ~lo~f ; rfJ],~f irl .gcIlcral does violate tile
l)osit,ivity condition oa Mil)kcmwki sI]ace, and t}icrcforc  does Ilot rcl~rcscllt, a

h4iakowski  quantuln  state for every choice of WI,.  ‘1’hc dcloonstratioll  of this is

o]~ly slightly more involvcx] than  tllc arguiticl)t,  1 gave in tllc I)recedillg  IJaragra I]ll
(which proved that, llol,~f -I wl,~f vio]atcs  positivity).  h’alllcly, consider  the

following cxl)rcssiolls for t,llc two-~, oillt, distrihutio]ls  po~f and )~~~,hf:

(27)

wllcrc j(k, w) demotes the IPourim  trallsforlll

o f  j E L ’e

m ( M ) ,  k,, = 2Tn/1,,  a~ld A k  ~ k,, + 1 - k,, =. 27r/1,.  ‘1’hc pri]lle o])
tllc su]n~natio~i sig]l ill l;q. (28) indicates  that tllc SUIII excludes n = O; this  is

Lccausc ~nasslcss quantuln  field tllcory ill two dirncmsions  is for]uu]atcd  wi th
test functions \ E COW(M)  whic]l satisfy ~ ~ = O to avoid i~lfrarcd-divergmlcc

IJrohlcnns.  [See tllc I)aragral)h  fol]owillg  IIkl. (17) ill [4] for an cxI)lanatioll  of this.
Note that ] ignore t~lis co~r}l)licatio]l  almost  colIIJJlctcly throug}]out ]ny analysis

ill this ])a~)cr bccausc  acco]l]~nodatillg it would not ]Ilakc a~ly diJTcrcllce (excq)t
for ~nakillg my IIotation  mc,rc co~[)})licatcd thal) it already is) ill tllc flow of lrly
argulncmt,. ] Now t}lc bi-so]utio)l  u~~, is required to satisfy oJlly t]le illequa]ity

l’;q. (26), so that

(/foI,Af -i wLJf)(.f, f) > 0 Vf c Cy(ftfl) , (29)

whereas to he the regularized l,wo-J]oillt  furlc.tio~l of a qualltu~n state on Mi]lkowski
sj)acc it would )Iecd to satisfy

(//oh’  -} uJ,,*f)(.f,  j) >0 Vf E c~(ld) . (30)

It is therefore suflicicnt  tc) SIIOW that tllcrc exist w], wllic.h satisfy l;q. (29) t,ut
violate };cl. (30). [Not,c that t,herc exist ltla~ly u~~, whit.11 satisfy both  I;qs. (29)

arid (30); any u~I, which, as a bi-so]utiorl, dccolnJ)oscs  into t}[~ kI]SOr J]rOCIUCt
of a solution with itself is au exalll~)lc  of this. 111 fact, for such a two-particle

‘f does corrcsI)o]ld  to a gclluinc s t a t es ta te  o]) u., the “u))wra])])il]g”  l~ofif + ~1]~,
011 Minkowski spacctilnc.]  ‘1’o scc that this is iadccd  tllc c.asc, coasider  t h o s e

.f E ~~(~) WIIOSC  l“our’icr traasfcmns  ~(k,  w) a r c  s]larr)ly  ]~cakcd around tl,c

quan t i zed  frwqucncics  k = k,,, ~J = -  Ik,ll.  ~1’o f i n d  a  cor,)J~act sup~)ortcd  f

of this kind,  start with a f(k, w) ill 1.2(1112)  wllicll is suc]l that (i) for fixed
Wo, ~(k,  Wo) d e c a y s  a t  infinity faster  tl)a~i ally i~lvcrsc polyno~tlia]  and is tllc

rcxtriction  to II? of all entire fu]lc.ticnl ~1 (z) o)) ~, and,  silllilarly,  for fixed k o,

~(ko, w) decays at infinity faster than ally i~,vcrsc J,oly)lo~nial  al,d is the restric-
tion to El of all entire fu]lctio)l j2(2)  on ~, (ii) at complex irlfillity, ~1 (2) has tllc
asylnJ)Lotic  bcllavior  Ijj (2)1 < A41 Ca]lzl, and, silllilarly,  j2(2)  has the asy]ll~)totic
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Lcllavior  l~~(z)l < 114zca21’1,  a~ >0, A4~ >0, and (iii) ~(k,w)  is sllarl~ly l]eakccl

arou]ld (k,L , - Ik,, l), 71 C. Z ‘1’hc i[)vcrsc  l’ouricr trallsforln  J(T, t) is tlte]l guar-
antccxl to Lc Cm and of cotll})act sul)l)ort by ‘Illcorcr))  7.4 ill Cllal,tcr  6 of [21].]
Accorclirlg  to I’;qs, (27)- (28), WIICII s~[lcarcd  with these f, lIDJ,~f(f, f) LCCOII~CS

arbitrarily large in co~]lj)arisoll  with po~f(~, j) as j(k, w) get lnore  and Il]orc
shar])lypcakcd  around  (k,,, - [k,ll). ltistllerlc leartllatat /~l,ca~ll,  efotlllds,  ,cll
that ){o~,~f  + m~,Af satisfies lI;q. (29) for all ~ E COW(IMI),  but for tllcsc %l)iky” j
pcrdd at (k,,, - [k,, I), WI,A~(j,  j) loallagcs  to bc Illorc negative than --/IoAf  (j, ~)

and hcnc.c violatcsl;q.(30).

AlthouglI  the obvious “easy” ~)roof of the cliffcrcncc illequa]ity  l;q. (15)
SCCIJIS to be ruled out by tl]c above arg; ulllcnt,  the results of this scctio]l  alrcacly

l)rovidc all tlic IIcxcssary  cxh-a ingrcdiclltjs  which, WIICJI co)]]  hinecl with the IJroof
of AN];(3  in Sect.4 of [4], constitute a co~ll~llctc proof of 14;q. (15) as I will ]~ow

cx~llairl.

4 .  I’rw3f  of tl~c clifIcrcuicc  i]lcxluality ill flat S1 X IR sj]accti]nc)

As this  section follows Sect.4 of [4] very closely, for brevity 1 will usc
tllc ~]rcfix 4 to denote ccluatiolls  ill [4]; e.g., l;q. (4.30)  will denote l;q. (30)  of
Rcfcrcmcc [4]. l,et //0],-1  WI, Lc a IIadainard  state on II, of thcforll]  lkl. (23),

and let y hc a cornp]ctc null geodesic ill II,. Just as tllc two- I~oillt distril)utiorls
0]1 Il. wcrx  l)uIIccI back to Ml ill t}lc previous scctioll,  so ca~l tllc IILIII geodesic y
bc lifted to a complete IIuI1 geodesic ~ on M, 1 call t,llert carry out, Itly atlalysis

cntirc]y  oI~ Minkowski spaccti]nc  as ill Sect,4  of [4]. Assu]nc, without, loss of
gellcrality)  that ~= {u= O } .  l)cfi]lc

(31)

ltisthc~l obvious that alollg~,

((~hb(v))], - -  JLd)r’kb=  ((~;”) ],-- IL”)= Y,,(v,  u), (32)

where (~~b(~))~,  denotes I,ilc regularized stress-energy alo~lg~ l)u]]cd  back to ~,
a~ld ]~ab is the Stress-  cxlcrgy tensor [l’kl  .(14)]  of the ~asiltlir vacuu]n state i(o~,,
agaiu pulled back to ~. 1]) l]rccisc  but, cullilmrso~llc ~lotatiol] (which thcrcforc  1
will avoic]) these quantities rcally should bc writ,tcll as ~“((~~b)~,)  and ~’l)ab,
where T : Ml -> 11, is the canonical I,rojcction. Now, by aI,l,lyiIlg exactly tllc
saincargumc~ltsa  st]losci~l [4]leadiligto 11kl,(4  .30),1 dcduc.c fromtllcpositivity

inequality l’;q. (26) that for all fu])ctiolls J’l, 3’2 ~ Com(Ill),
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wllcrc now instead of lkls. (4. 26) and (4. 31)

~,o,,fif [l’, 1’]= 2 f: k,,
!,:0

and <0

IIavc, in accordance with l;q. (28),

t’(k,, )12Ak , (34)

c7,,Jf[Y1  , F’] = - 4  1],,); lf,~i (k,,)~z(~r,)  AIc (35)
?1:0

1 will IIOW trace  the argulnents  in [4] fcdlowing l’;q. (4. 31) and verify that tlIey

lead to a proof of the diflcmnce inequality 1 ;q. (15) as j)rorniscd. l’irst  assulne,
as i]] [4], that the func,tiol] YI, (v) z}’)  bc]ongs to Schwartz spat.c, i.e., it and

all its derivatives decay at illfi~lity  fas{er  tlla]l any polyllo]nial.  l{y the salne

algebra that leads in [4] to l;q. (4. 32), it follows froll] l+kls. (33)- (35) that for all
1’1, 1’2 E L’y(Ill)

[ 1~k,,lPI(k,,)12Ak  -1 <(J;’I,JI) -  q(i,,i,) x.d
?1>0

w}lerc <(~’,  ~’) and q(~’,  ~) are given by the same  cxl,ression.s as ~{;qs. (4. 33)
(with ~ rcj,laccd  with Y1,). ‘1’hcvl,  I)rcciscly the salnc argulncmt which i~l [4]
lcacls from }’;q. (4. 32) to }IkIs.  (4. 39) a~)d (4. 40) leacls l)crc to tllc cone.lusio]ls

and, as i~) l;q. (4.40),

!
02

!
co

Y], (U, v) flu = 2 YL(k,  - k)dk , (38)
-m o

which, WIICII coml)incd with I;q. (32), ~)rove tllc cliflcrcllcc inequality II;q. (15) irl
this Schwartz-s  j)acc Y1, (v, v’) case [in w]lic.]) t]lc i~)tegra~)d  ((~~b)~, - ~)a~)kakb  is
i]]tcgrablc].  ]JI the general  case, the argu]llcllt  1 need to use is again identical to
the orIc in [4] bctwccn l’;qs. (4, 40) and (4. 59), cxc,c~,t Ll]at in the present analysis

it leads to equalities of tllc form)

With the Salllc Cho]ccs  for IA, K(W)  and (Jx, K(rJ) as 111 ]’; qS, ( 4 . 4 2 ) .  IIerc @(K, A) is

a continuous function  SUCII  that

o< f?(A, K)<l QA>O,  K90, (40)

and cl(x) arc co~ltinuous  fullctio]ls  with the sarnc dcc.ay property as dcscribcd
in [4] following lq. (4. 46). ‘1’hc scxoIId part of the ar,gutIIcnt [spcl]cd out in [4]
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I)ctwccn  l’;qs. (4, 48) and (4. 59)] call Lc rcljeatcd  identically llmc, lcadillg  to tllc
i~lcqualit,y

IIy I’;c1. ( 4 0 )  a n d  t,llc asynil,totic  l,cllavicrr of cl(r), tllcrc exist 6, 1( > 0 SUCII
that

a~lcl, when combined  with l;q, (41), this illcqua]ity  ~)rovcs not only tllc diffcrcllce-
illcqualitly rcsu]t

l~!l,i~f
/

m ( (7 LV)J, - 1)”, )[c(v/A)]2  rfv >0, (43)
-w

but also t}lc sharj)cr  cstilnate

/

w

(  (~;t,),,  - ])vt, )[C(tI/A)]2 dv ~ - ; (44)
-w

as in l’;q. (4.59),

5. I’roof of the clifrmmlrx:  illqllality ill curwd twc)-clil]lc!llsic)llal  s])ac.c+

time

Collsidcr  a two-di~llcmsiorlal,  globally lly~)crbolic s})acctilllc  (?M, g) with
a ~l)asslcss  Klein-Gordon field ~, arid let T Le a coInI)lcte  null geodesic iil M.
IIy Sect. 5 of [4], if y is acllrol]al tl)c rcnorrllalizcd  stress-cllcrgy tensor ill every
Iladamard state of @ satisfies t}lc difl’crcllce  inequality l’;q. (15) along T with
1)06 = O (i.e., it satisfies ANI;C).  If ~ is not acllrona], tlle~l 1 claim that (?M, g)
has topology S’ X k? a]ld is globally  C.o)lforvnal to a flat cy]iudcr II, for solnc
1’>0.

‘J’o prove this, let p and g lJC ally l,air  of tilllclikc-relatml  l)oi]lts along
y (sucli pairs  exist  since y is assu],led noll-ac],ro]ial).  ASSUJIIC  that q < 1+ (p),

Since (M, g) is gloLally hyl)crLolic, it is causally sillll)le ([22]), i.e., ~i (p) co]l-
sists  of JIU]] geodesics from p w~lic]l  have 110 past cndpoir[ts  other than p itself.

Clearly, q cannot bcloJlg to J+ (p) as it is ti]llc]ikc-re]ated  top; therefore, ~ lnust
leave ~+ (p) at sornc point p’ to tllc l)ast of q. Since ~+ (p) is an acllrollal  Cl -

sublnanifo]d  without Loundary  (~2],  Clla})tcr  6), a~ld p’ lies on ~i (p), y IIlust

intersect the Other Jru]i  generator 6 of ~4 (;)) at p’; ot}]crwisc p’ would  lie or) the
Lourlclary  of ~(+ )(p). ‘J’hc portion of 6 to the future of p’ is tirnclike relatecl

to p (sil]cc every point in this  portion lies on a brokcll  ]I~Jll geodesic fro~ll p),
thcrcforc  6 ]nust also ]mvc ~+ (f,) at p’; c~tlicrwise ~+ (p) would not bc achronal.
Consequent ly ,  Ji (p) is Colnl)ac.t.  IIccause (M, g) is glot)ally hyperbolic,, there
exists a Caucl]y surface }; t,hroug]l p, and ally gloLal tirnelikc vector field 011 M
~)rovidcs  a difTcornorphisn} fro~n  ~i (?))  intc~ );. Siric.e ~+ (p) is colnl]act  wit}l-
out  Loundary,  2; rr]ust also be co]llpact. Ilut the only colllpact  l-nlatlifold  is



S ] , and by global hy})erbo]icity ?vf is diffcolnorjlhic  to 1; x IN, thcrcforc,  34 is
difleornorp]}ic  to S1 x Ik. ‘1’0 prove that (M, g) is globally collforlnal to 11,,  it

suflices to silnl)]y  carry out the usual local argull)cmt  wllicll  proves that, auy two-

di~]]cnsiona] s~jacetilnc is locally co~lforlnally  flat, usiug as the ti~oe coordinate t

a slrlooth labcliug  of the Cauchy  sui-faces S1 C. M, and as tllc ~ coordinate ally
coordinate on one of the Cauchy  S]’s exkllded globally oIIto  M (aI)art  frol]l tllc
obvious coordinate singularity on S] ) by keeping it constant alo~ig a ti~tlclikc
vector field orthogolla]  to the Cauc]ly surfaces. ‘1’o su]n[narim:  if a globally

llypcrbo]ic  (%T,  g) ad]nits  a non-acllronal  IIUII geodesic, then tllcrc exists a dif-
fcomorj)hisrn  W :1. - ~ M suclI that Vf”g  = L’(u, V) TII,, wllcrc  qr, = - du dv is tllc

flat lnctr-ic 0111. written ill local lIull Coordillatcs  {u, v}, and L’(u, v) > 0 is a
s]nooth fuuction  ou Il..

With T a cornp]ctc no~l-achronal  null geodesic ill (?M, g), aud with tbc
simp]e gcolnctry  of Nf as ullcovcrcd ill tllc above ~]aragrapb, it is now quite
straightforward to give all a~lalysis parallel to that of Sect. 5 in [4], whcm tllc
~)roof  of ANIC in curved two-dilllellsiona]  sj,acctitrlc  was reduced to tllc ~Jrc-

ceding ~)roof in flat, Minkowski space. Na~l]cly, t he  Casi~nir vacuu~n state 011

11, givcu  b y  F;q. (28) deterlnillcs,  ulldcr tllc co]lfor~oal  isoruetry  @ : II, - } M, a
corresponding qualltunl  state 0]1 M. ~1’his is because tllc niassless  wave o~)m-
ator as well as tllc Klein-Gordon il)l]cr  Jjroduct  u arc c.onfor]nally invariant  ill
two dilnensiolls,  conscqueutly  there  exists a o]le-to-ollc corrcsl)ondeIlce bctwce]l
states deflncd  OD 11. aud states defillcd on M, detcrlninecl  by rnal)I~ing the two-
lJoint distributions backwards or forwards via tile difl’colnorphis]n  W. Note also
that, the spacetiloe  (3vf, g) is iTl fact ismjletric  to tllc cylilldcr 1. equil)l)ccl  wit}l

the metric  g = C qI, = - C(u, v) dt~ dv, therefore I call usc this  rc~)rescntatioll
of (Rt, g) throughout without ally loss of generality, aud as this will silo~)lify

]ny notation considcrab]y  I will do so from IIerc on.] I,ct me dcrlot,e the two-
point  distributio~l  of this  state by IJC(X, x’) [ill tllc iso]~lctric representation of

M as (11.,  g), this distribution IIa.s  the same functional forl]l as po~, (z, ~’)].  ‘J’he
rcnor~nalizcd stress-energy in this “collforllial” Casiloir  vacuum is dctcr~nined
clltircly  by the con forloa] auolna]y  [see l’;qs. (1 0)- (1 1 ) iu [3]], and call be writtcl)
ill LIIC form

(45)

whcr-c  11$) is the Casi~nir cmcrgy OJI tl~c flat 1. given by the riglit band side of

l;q. (14), R is the Ricci scalar of (Nf, g), a~ld, in the local Dull coordiuatcs  {u, v},

o [‘“1 C,”u
~ ~,uz

u u =
1i4n ‘-C - 3 C2 ‘

o
[

1 c,.” 3(:”2
vu = - —:

154n ‘“C - 2 C2 ‘
(46)

o Uu = O.u=o.

Now, any IIadalnard state o]) (Al, g) has a twwl)oint  ful)ctiol)  of the forlo

p(~, z!’) = //.(2!, d) + U1(Z,2!’)  , (47)

where w(x, 2’) is a smooth l~i-solutic)n  such that p satisfies the positivity  i]l-
cquality  Eq. (19). It is crucial to keep in nlind that although pc(x,  z’) has the
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]Iaclaroard  for-lo, it is not a locally constructed two-l] oint. distribution, lIC]lCC it
cannot  be used to rcgu]arizc  ll(r, r’) as l’kl. (47) suggcs[s. Iusteacl, an a~)propri-
atc lIaclalnarcl  distribution) 111] c.onstr-uctrxl cll~ircly out of the local gcolnetcy

of (Nf,  g) needs to bc subtracted fro~li I( to obtain  tllc regularized two-l]oillt

function; tllc comr)oncnts  of the slrcss-cllcrgy  tensor are thc]l obtainccl as the
coincidence lilnits  of tllc derivatives of this r-cgularizccl  two-~ )oint ful)ction 11– /[l/.

~lhis ~,oil,t is of course also valid for t},e analysis of the ~~rcvious section, where
it was ilnl)licit  in t,hc derivation of lI;q. (32) from l;q. (31).] IIowcvcr,  for ]IIy anal-
ysis IIcrc (as also for the analysis  of tlIc l]rcvious scctioll),  it is l]ot necessary

to ~nake cxl)licit  the forln of p~l (r, x’);  the stress-c]lcrgy due to t)le difference
I(C - 1(11 is already dctcr~nined colt]lllctcly by the Casirtlir  C.ontributioll l;qs. (45)-

(46), alld the rest of the stress-cllergy is give~, silnl)ly by coillcidencc lilllits  of

the appropriate derivatives of the sl]lootll bi-solutiol]  u)(z, x’). ‘1’ilcrcforc, cx-
przssions  of the forlo l;qs. (31)- (32) (with w rcplacil]g  WI, ) are still valid for tllc
difference-inequality i~ltcgrand  ((~~b)  -- l~a[,)kdk~ along ‘y, and usil]g the l,osi-
tivity inequality for the two-point, function  l;q. (47) ill exactly the salne lnanner
as 1 dicl in the previous section, 1 arrive at the following filial collclusio~l:

~’l)c:orcm]: l,et (M,g) be a globally hyl)crl)o]ic  two-dilncnsiona]  sI)acetilllc  wit]]
a ]Ilasslcss Klein -C, ordoll field ~. ~l]cn tllc regularized stress-energy tensor

(w17~~lu) of 4 in any lladarnard state u is constrairlcd  ill the fol lowing way:
(i) Alorlg every acliro~lal cor]]pletc  null geodesic T c M the diflcrcnce irlcqua]ity
]’;q. (15) ho]ds Witl)  1]0*  : 0. (ii) If Nl adlnits a norl-acllrorlal lIuII geodesic,

then (?vf, g) is globally corlforrna]  to II, ;Y S’l x M, arid alorlg every cornj)lcte null
geodesic  -y irl M tllc difl’m-crlcc  i]lcc]uality  l;q. (15) holds with I)ab dcfincxl by
Eqs. (45)- (46).

“1’hc proof of the difl’crellce inequality irl two dilllmlsiorls  suggests t]lat

rllore gcrlcrally, when (.M, g) is a rnultil)ly- conrlccted (four-d irncnsional)  glot)-
ally hypcrbo]ic  sl)accti?nc, au inequality of tllc form l;q. (15) rliigllt hold or) a

com}~]cte non-achronal  ]iull geodesic y if tlic liftirlg of y irl tile sirn~)ly-corlnec  tcd
covering space ?vf is achro~lal arid satisfies A NI;C. Whcri -f is a r}on-acllrollal
corllr)lctc  riul] geodesic ill a si}~)~~ly-co~lr)cctcd slJacctirnc (i. e., WIICII the failure
of achronality  is due to gravitational focusil)g  rather t,hall the topology of ?vf),
Iny proof does IIot  provide arly i~lsigllts into wllctllcr  diffcrcmcc irlcqualitics  are
reasonable as constraints o]) the stress- crlcrgy  tensor along -f.
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